Applied Sciences (Feb 2020)

Thermal Relaxation Spectra for Evaluating Luminescence Quantum Efficiency of CASN:Eu<sup>2+</sup> Measured by Balanced-Detection Sagnac-Interferometer Photothermal Deflection Spectroscopy

  • Hiromichi Chima,
  • Naoyuki Shiokawa,
  • Keisuke Seto,
  • Kohsei Takahashi,
  • Naoto Hirosaki,
  • Takayoshi Kobayashi,
  • Eiji Tokunaga

DOI
https://doi.org/10.3390/app10031008
Journal volume & issue
Vol. 10, no. 3
p. 1008

Abstract

Read online

Highly sensitive broadband photothermal spectroscopy with a white-light lamp as the excitation source was developed by combining a Sagnac interferometer and balanced detection with a photothermal deflection method. A probe beam was split by a birefringent crystal CaCO3 into signal and reference beams with a balanced intensity. This balanced detection enabled the measurement of photoexcited thermal relaxation spectra of materials in the air over the whole visible range in the weak excitation limit 50 µW/cm2. The photothermal excitation spectrum of Eu2+-doped CaAlSiN3 phosphors (CASN:Eu2+) with a high luminescent quantum efficiency was measured to be distinctly different from the photoluminescence excitation spectrum which reflects the absorption spectrum, revealing the thermal relaxation mechanism of the phosphor. Assuming a typical non-radiative relaxation from the higher excited states to the lowest excited state and successively to the ground state, it is demonstrated that the photoluminescence efficiency of the phosphors is readily evaluated simply by comparing the photothermal and photoluminescence excitation spectra.

Keywords