The Astronomical Journal (Jan 2023)

The Demographics of Terrestrial Planets in the Venus Zone

  • Colby Ostberg,
  • Stephen R. Kane,
  • Zhexing Li,
  • Edward W. Schwieterman,
  • Michelle L. Hill,
  • Kimberly Bott,
  • Paul A. Dalba,
  • Tara Fetherolf,
  • James W. Head,
  • Cayman T. Unterborn

DOI
https://doi.org/10.3847/1538-3881/acbfaf
Journal volume & issue
Vol. 165, no. 4
p. 168

Abstract

Read online

Understanding the physical characteristics of Venus, including its atmosphere, interior, and its evolutionary pathway with respect to Earth, remains a vital component for terrestrial planet evolution models and the emergence and/or decline of planetary habitability. A statistical strategy for evaluating the evolutionary pathways of terrestrial planets lies in the atmospheric characterization of exoplanets, where the sample size provides sufficient means for determining required runaway greenhouse conditions. Observations of potential exo-Venuses can help confirm hypotheses about Venus’s past, as well as the occurrence rate of Venus-like planets in other systems. Additionally, the data from future Venus missions, such as DAVINCI, EnVision, and VERITAS, will provide valuable information regarding Venus, and the study of exo-Venuses will be complimentary to these missions. To facilitate studies of exo-Venus candidates, we provide a catalog of all confirmed terrestrial planets in the Venus zone, including transiting and nontransiting cases, and quantify their potential for follow-up observations. We examine the demographics of the exo-Venus population with relation to stellar and planetary properties, such as the planetary radius gap. We highlight specific high-priority exo-Venus targets for follow-up observations, including TOI-2285 b, LTT 1445 A c, TOI-1266 c, LHS 1140 c, and L98–59 d. We also discuss follow-up observations that may yield further insight into the Venus/Earth divergence in atmospheric properties.

Keywords