Green Processing and Synthesis (Jun 2018)

Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles

  • Mohammad Shafiee Mohammad Reza,
  • Kargar Mahboubeh,
  • Ghashang Majid

DOI
https://doi.org/10.1515/gps-2016-0219
Journal volume & issue
Vol. 7, no. 3
pp. 248 – 254

Abstract

Read online

The synthesis of oxides has a significant role in their improved properties. This is why a green method is used to gain stable oxide nanoparticles. Zn2+ doped magnesium oxide (MgO) nanoparticles were synthesized through a green method, extracting Aloe vera latex media. The green method has the advantages of being a cost-effective, innocuous, eco-friendly method. Firstly, thanks to the structure of Aloe vera latex, its extract has an important role in morphology, and crystal size of MgO structure, which leads to homogenous nanoparticles dispersion. The elliptical particles with ranges from 45 nm to 65 nm were observed by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Furthermore, the effect of calcination temperature was investigated, showing that increasing calcination temperature made larger particles with sharper peaks in X-ray diffraction (XRD) analysis. The strain value (ε) and crystallite size by Williamson-Hall (nm), dislocation density, and crystallinity index were evaluated. Finally, energy dispersive X-ray spectroscopy (EDS) confirmed the doping of Zn2+ in MgO nanoparticles. Fourier transform infrared (FT-IR) and HRTEM analyses were also used.

Keywords