Computational and Structural Biotechnology Journal (Jan 2022)

An allosteric regulation mechanism of Arabidopsis Serine/Threonine kinase 1 (SIK1) through phosphorylation

  • Junxi Mu,
  • Jiali Zhou,
  • Qingqiu Gong,
  • Qin Xu

Journal volume & issue
Vol. 20
pp. 368 – 379

Abstract

Read online

The Arabidopsis Serine/Threonine Kinase 1 (SIK1) is a Sterile 20 (STE20)/Hippo orthologue that is also categorized as a Mitogen-Activated Protein Kinase Kinase Kinase Kinase (MAP4K). Like its animal and fungi orthologues, SIK1 is required for cell cycle exit, cell expansion, polarity establishment, as well as pathogenic response. The catalytic activity of SIK1, like other MAPKs, is presumably regulated by its phosphorylation states. Since no crystal structure for SIK1 has been reported yet, we built structural models for SIK1 kinase domain in different phosphorylation states with different pocket conformation to see how this kinase may be regulated. Using computational structural biology methods, we outlined a conduction path in which a phosphorylation site on the A-loop regulates the catalytic activity of SIK1 by controlling the closing or opening of the catalytic pocket at the G-loop. Furthermore, with analyses on the dynamic motions and in vitro kinase assay, we confirmed that three key residues in this conduction path, Lys278, Glu295, and Arg370, are indeed important for the kinase activity of SIK1. Since these residues are conserved in all STE20 kinases examined, the regulatory mechanism that we discovered may be common in STE20 kinases.

Keywords