Nanomaterials (May 2020)

Controlling the Structures, Flexibility, Conductivity Stability of Three-Dimensional Conductive Networks of Silver Nanoparticles/Carbon-Based Nanomaterials with Nanodispersion and their Application in Wearable Electronic Sensors

  • Chih-Wei Chiu,
  • Jia-Wun Li,
  • Chen-Yang Huang,
  • Shun-Siang Yang,
  • Yu-Chian Soong,
  • Chih-Lung Lin,
  • Jimmy Chi-Min Lee,
  • William Anderson Lee Sanchez,
  • Chih-Chia Cheng,
  • Maw-Cherng Suen

DOI
https://doi.org/10.3390/nano10051009
Journal volume & issue
Vol. 10, no. 5
p. 1009

Abstract

Read online

This research has successfully synthesized highly flexible and conductive nanohybrid electrode films. Nanodispersion and stabilization of silver nanoparticles (AgNPs) were achieved via non-covalent adsorption and with an organic polymeric dispersant and inorganic carbon-based nanomaterials—nano-carbon black (CB), carbon nanotubes (CNT), and graphene oxide (GO). The new polymeric dispersant—polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene (PIB-POE-PIB) triblock copolymer—could stabilize AgNPs. Simultaneously, this stabilization was conducted through the addition of mixed organic/inorganic dispersants based on zero- (0D), one- (1D), and two-dimensional (2D) nanomaterials, namely CB, CNT, and GO. Furthermore, the dispersion solution was evenly coated/mixed onto polymeric substrates, and the products were heated. As a result, highly conductive thin-film materials (with a surface electrical resistance of approximately 10−2 Ω/sq) were eventually acquired. The results indicated that 2D carbon-based nanomaterials (GO) could stabilize AgNPs more effectively during their reductNion and, hence, generate particles with the smallest sizes, as the COO− functional groups of GO are evenly distributed. The optimal AgNPs/PIB-POE-PIB/GO ratio was 20:20:1. Furthermore, the flexible electrode layers were successfully manufactured and applied in wearable electronic sensors to generate electrocardiograms (ECGs). ECGs were, thereafter, successfully obtained.

Keywords