Scientific Reports (Dec 2024)
Solvent extraction of Ac-225 in nano-layer coated, solvent resistant PDMS microfluidic chips
Abstract
Abstract Separating medical radionuclides from their targets is one of the most critical steps in radiopharmaceutical production. Among many separation methods, solvent extraction has a lot of potential due to its simplicity, high selectivity, and high efficiency. Especially with the rise of polydimethylsiloxane (PDMS) microfluidic chips, this extraction process can take place in a simple and reproducible chip platform continuously and automatically. Furthermore, the microfluidic chips can be coated with metal-oxide nano-layers, increasing their resistance against the employed organic solvents. We fabricated such chips and demonstrated a parallel flow at a considerably large range of flow rates using the aqueous and organic solutions commonly used in medical radionuclide extraction. In our following case study for the separation of Ac-225 from radium with the chelator di(2-ethylhexyl)phosphoric acid (D2EHPA), a remarkable extraction efficiency of 97.1 % ± 1.5 % was reached within 1.8 seconds of contact time, while maintaining a near perfect phase separation of the aqueous and organic solutions. This method has the potential to enable automation of solvent extraction and faster target recycling, and serves, therefore, as a proof-of-concept for the applicability of microfluidic chip solvent extraction of (medical) radionuclides.
Keywords