Naringenin improves muscle endurance via activation of the Sp1-ERRγ transcriptional axis
Zhenyu Lv,
Jiao Meng,
Sheng Yao,
Fu Xiao,
Shilong Li,
Haoyang Shi,
Chen Cui,
Kaixian Chen,
Xiaomin Luo,
Yang Ye,
Chang Chen
Affiliations
Zhenyu Lv
National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
Jiao Meng
National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Sheng Yao
State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
Fu Xiao
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Shilong Li
National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
Haoyang Shi
National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
Chen Cui
University of Chinese Academy of Sciences, Beijing 100049, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Kaixian Chen
University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Xiaomin Luo
University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Corresponding author
Yang Ye
State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China; Corresponding author
Chang Chen
National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China; Corresponding author
Summary: Skeletal muscle function declines in the aging process or disease; however, until now, skeletal muscle has remained one of the organs most undertreated with medication. In this study, naringenin (NAR) was found to build muscle endurance in wild-type mice of different ages by increasing oxidative myofiber numbers and aerobic metabolism, and it ameliorates muscle dysfunction in mdx mice. The transcription factor Sp1 was identified as a direct target of NAR and was shown to mediate the function of NAR on muscle. Moreover, the binding site of NAR on Sp1 was further validated as GLN-110. NAR enhances the binding of Sp1 to the CCCTGCCCTC sequence of the Esrrg promoter by promoting Sp1 phosphorylation, thus upregulating Esrrg expression. The identification of the Sp1-ERRγ transcriptional axis is of great significance in basic muscle research, and this function of NAR has potential implications for the improvement of muscle function and the prevention of muscle atrophy.