Discover Applied Sciences (Nov 2024)

Structural analysis and fatigue prediction of harrow tines used in Canadian prairies

  • Arafater Rahman,
  • Mohammad Abu Hasan Khondoker

DOI
https://doi.org/10.1007/s42452-024-06310-5
Journal volume & issue
Vol. 6, no. 11
pp. 1 – 18

Abstract

Read online

Abstract The Canadian prairies are renowned for their substantial agricultural contributions to the global food market. Harrow tines are indispensable in farming equipment, especially for soil preparation and weed control before planting crops. During operation, these tines are exposed to repetitive cyclic loading, which eventually causes fatigue failure. Commercially available three different harrow tines named 0.562HT, 0.625HT, and 0.500HT undergo an experimental fatigue evaluation and are validated through Finite Element Analysis (FEA). Fatigue life estimation for different deflections under various real-field deflections was carried out where 0.562HT showed groundbreaking life compared with others. The study results showed that the fatigue life is highly dependent on geometry, number of coils, pitch angle, leg length, and coil diameter. The 0.354HT model, developed to investigate the effect of wire diameter, closely resembles the 0.500HT model. The harrowing ability of the four different harrow tine models against identical deflections has been analyzed. Experimental fractured surfaces went through morphological investigation. This research has an impeccable impact on prairies’ agricultural acceleration by saving time and mitigating unpredictable fatigue failure often faced by farmers. Even the observed failure phenomena can serve as motivation to develop more reliable and durable harrow tines, which could increase agricultural efficiency.

Keywords