Dataset of userʼs emotional reactions to news articlesZenodo
Consuelo-Varinia García-Mendoza,
Omar Juarez Gambino,
Marco-Antonio Torres-López,
Tania Rosales-Onofre,
Jessica-Alejandra Castillo-Montoya,
Yael-Alexandr Sanchez-Mederos,
José-Manuel Suárez-Bautista
Affiliations
Consuelo-Varinia García-Mendoza
Instituto Politécnico Nacional, Escuela Superior de Cómputo, ESCOM-IPN, J.D. Batiz e/ M.O. de Mendizabal, Mexico City 07738, Mexico
Omar Juarez Gambino
Corresponding author.; Instituto Politécnico Nacional, Escuela Superior de Cómputo, ESCOM-IPN, J.D. Batiz e/ M.O. de Mendizabal, Mexico City 07738, Mexico
Marco-Antonio Torres-López
Instituto Politécnico Nacional, Escuela Superior de Cómputo, ESCOM-IPN, J.D. Batiz e/ M.O. de Mendizabal, Mexico City 07738, Mexico
Tania Rosales-Onofre
Instituto Politécnico Nacional, Escuela Superior de Cómputo, ESCOM-IPN, J.D. Batiz e/ M.O. de Mendizabal, Mexico City 07738, Mexico
Jessica-Alejandra Castillo-Montoya
Instituto Politécnico Nacional, Escuela Superior de Cómputo, ESCOM-IPN, J.D. Batiz e/ M.O. de Mendizabal, Mexico City 07738, Mexico
Yael-Alexandr Sanchez-Mederos
Instituto Politécnico Nacional, Escuela Superior de Cómputo, ESCOM-IPN, J.D. Batiz e/ M.O. de Mendizabal, Mexico City 07738, Mexico
José-Manuel Suárez-Bautista
Instituto Politécnico Nacional, Escuela Superior de Cómputo, ESCOM-IPN, J.D. Batiz e/ M.O. de Mendizabal, Mexico City 07738, Mexico
This paper presents a dataset of news articles collected from several Mexican news sources and users' emotional reactions to these news articles. Users were presented with the collected news and, after reading it, were asked to indicate the emotion it provoked in them. The emotions considered were happy, surprised, inspired, moved, neutral, sad, fearful, and angry. This dataset offers a particular focus on emotional reactions from the readerʼs perspective and has great potential for use in sentiment analysis, linguistics, and media studies research. Furthermore, the news is in Spanish which is a language where resources of this type are scarce. The detailed data collection methodology provides a solid foundation for future research and development in emotion-aware news recommendation systems.