Cellular Physiology and Biochemistry (2018-11-01)

Protective Effects of Morus Root Extract (MRE) Against Lipopolysaccharide-Activated RAW264.7 Cells and CCl4-Induced Mouse Hepatic Damage

  • Tsui-Hwa Tseng,
  • Wea-Lung Lin,
  • Che-Kai Chang,
  • Ko-Chao Lee,
  • Shui-Yi Tung,
  • Hsing-Chun Kuo

Journal volume & issue
Vol. 51, no. 3
pp. 1376 – 1388


Read online

Background/Aims: Inflammation is one of the main contributors to chronic diseases such as cancer. It is of great value to identify the potential activity of various medicinal plants for regulating or blocking uncontrolled chronic inflammation. We investigated whether the root extract of Morus australis possesses antiinflammatory and antioxidative stress potential and hepatic protective activity. Methods: The microwave-assisted extractionwere was used to prepare the ethanol extract from the dried root of Morus australis (MRE), including polyphenolic and flavonoid contents. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells was examined the anti-inflammatory and anti-oxidative potential of MRE. CCl4-induced mouse hepatic damage were performed to detect the hepatic protective potential in vivo. Immunohistochemistry (IHC) and western blot assays were used to detect target proteins. Results: MRE contained approximately 23% phenolic compounds and 3% flavonoids. The major flavonoid component of MRE was morusin. MRE and morusin inhibited lipopolysaccharide-induced production of nitrite and prostaglandin E2 in RAW264.7 cells. MRE and morusin also suppressed the formation of intracellular reactive oxygen species and the expression of iNOS and COX-2. In an in vivo study, a thiobarbituric acid reactive substances assay showed that MRE inhibited CCl4-induced oxidative stress and expression of nitrotyrosine. MRE also decreased CCl4-induced hepatic iNOS and COX-2 expression, as well as CCl4-induced hepatic inflammation and necrosis in mice. Conclusion: MRE exhibited antiinflammatory and hepatic protective activity.