Axioms (Jan 2024)
A New Criterion for Improving Convergence of Fuzzy C-Means Clustering
Abstract
One of the most used algorithms to solve the fuzzy clustering problem is Fuzzy C-Means; however, one of its main limitations is its high computational complexity. It is known that the efficiency of an algorithm depends, among other factors, on the strategies for its initialization and convergence. In this research, a new convergence strategy is proposed, which is based on the difference of the objective function values, in two consecutive iterations, expressed as a percentage of its value in the next to the last one. Additionally, a new method is proposed to optimize the selection of values of the convergence or stop threshold of the algorithm, which is based on the Pareto principle. To validate our approach, a collection of real datasets was solved, and a significant reduction in the number of iterations was observed, without affecting significantly the solution quality. Based on the proposed method and the experiments carried out, we found it is convenient to use threshold values equal to 0.73 and 0.35 if a decrease in the number of iterations of approximately 75.2% and 64.56%, respectively, is wanted, at the expense of a reduction in solution quality of 2% and 1%, respectively. It is worth mentioning that, as the size of the datasets is increased, the proposed approach tends to obtain better results, and therefore, its use is suggested for datasets found in Big Data and Data Science.
Keywords