Scientific Reports (Mar 2022)

Temperature dependence of the thermo-optic coefficient in 4H-SiC and GaN slabs at the wavelength of 1550 nm

  • Sandro Rao,
  • Elisa D. Mallemace,
  • Giuseppe Cocorullo,
  • Giuliana Faggio,
  • Giacomo Messina,
  • Francesco G. Della Corte

DOI
https://doi.org/10.1038/s41598-022-08232-x
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 7

Abstract

Read online

Abstract The refractive index and its variation with temperature, i.e. the thermo-optic coefficient, are basic optical parameters for all those semiconductors that are used in the fabrication of linear and non-linear opto-electronic devices and systems. Recently, 4H single-crystal silicon carbide (4H-SiC) and gallium nitride (GaN) have emerged as excellent building materials for high power and high-temperature electronics, and wide parallel applications in photonics can be consequently forecasted in the near future, in particular in the infrared telecommunication band of λ = 1500–1600 nm. In this paper, the thermo-optic coefficient (dn/dT) is experimentally measured in 4H-SiC and GaN substrates, from room temperature to 480 K, at the wavelength of 1550 nm. Specifically, the substrates, forming natural Fabry–Perot etalons, are exploited within a simple hybrid fiber free-space optical interferometric system to take accurate measurements of the transmitted optical power in the said temperature range. It is found that, for both semiconductors, dn/dT is itself remarkably temperature-dependent, in particular quadratically for GaN and almost linearly for 4H-SiC.