Advances in Electrical and Computer Engineering (May 2024)
Development of a Very Low-Cost Deforestation Monitoring System Based on Aerial Image Clustering and Compression Techniques
Abstract
Clustering holds significant utility across a spectrum of several domains, including pattern recognition, image analysis, customer analytics, market segmentation, social network analysis, and numerous other areas. The main advantages of image clustering are its degree of freedom regarding data labeling and the lack of training and model deployment, which makes them suitable for the overall study’s purpose of land cover segmentation and deforestation monitoring. In previous work, the Gaussian Mixture Model (GMM) technique has been established as the best option. Due to the necessity of implementing the algorithm on light unmanned airborne platforms for fast deforestation monitoring, the high resources and long computation time became an issue. This paper proposes several cost-efficient GMM clustering algorithms based on discrete transforms traditionally used for image compression. The results will show that the proposed methods maintain the clustering output quality while drastically decreasing the computation time and also lowering the memory needed to perform.
Keywords