Adaptable Phosphate Networks towards Robust, Reprocessable, Weldable, and Alertable-Yet-Extinguishable Epoxy Vitrimer
Jia-Hui Lu,
Zhen Li,
Jia-Hui Chen,
Shu-Liang Li,
Jie-Hao He,
Song Gu,
Bo-Wen Liu,
Li Chen,
Yu-Zhong Wang
Affiliations
Jia-Hui Lu
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Zhen Li
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Jia-Hui Chen
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Shu-Liang Li
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Jie-Hao He
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Song Gu
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Bo-Wen Liu
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Li Chen
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Yu-Zhong Wang
School of Chemical Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Covalent adaptable networks (CANs) combine the uniqueness of thermoplastics and thermosets to allow for reprocessability while being covalently crosslinked. However, it is highly desirable but rarely achieved for CANs to simultaneously demonstrate reversibility and mechanical robustness. Herein, we report a feasible strategy to develop a novel epoxy vitrimer (EV) composed of adaptable phosphate networks (APNs), by which the EVs exhibit promising mechanical properties (tensile strength of 62.5 ~ 87.8 MPa and tensile modulus of 1360.1 ~ 2975.3 MPa) under ambient conditions. At elevated temperatures, the topology rearrangement occurs relied on phosphate transesterification, which contributes to the shape memory performance, self-healing, reprocessing, and welding behaviors. Moreover, the incorporation of APNs allows for improvements in anti-ignition and also the inhibition of both heat release and smoke generation to avoid empyrosis, asphyxiation, and toxication during burning, showing expected intrinsic fire safety. Thermal, mechanical properties, and flame retardancy of the reprocessed EVs after hot pressing are very close to those of the original EVs, which is attributed to the sufficient reversibility of APNs. Accordingly, combining the aforementioned features, EVs are manufactured as flame-triggered switches for fire alarms, which symbolizes the innovative development of high-performance covalent adaptable polymeric materials.