Applied Sciences (Oct 2021)

Experimental Study of a Piezoelectric De-Icing System Implemented to Rotorcraft Blades

  • Eric Villeneuve,
  • Sebastian Ghinet,
  • Christophe Volat

DOI
https://doi.org/10.3390/app11219869
Journal volume & issue
Vol. 11, no. 21
p. 9869

Abstract

Read online

A four-year project investigating the use of piezoelectric actuators as a vibration-based low power de-icing system has been initiated at the Anti-Icing Materials Laboratory. The work done preceding this investigation consisted of studying, numerically and experimentally, the system integration to a flat plate structure, the optimal excitation of the system, the resonant structural modes and the shear stress amplitudes to achieve de-icing for that structure. In this new investigation, the concepts and conclusions obtained on the flat plate structure were used to design and integrate the system into a rotating blade structure. An experimental setup was built for de-icing tests in rotation within an icing wind tunnel, and a finite-element numerical model adapted to the new geometry of the blade was developed based on the expertise accumulated using previous flat plate structure analysis. Complete de-icing of the structure was obtained in the wind tunnel using the developed de-icing system, and its power consumption was estimated. The power consumption was observed to be lower than the currently used electrothermal systems. The finite-elements numerical model was therefore used to study the case of a full-scale tail rotor blade and showed that the power reduction of the system could be significantly higher for a longer blade, confirming, therefore, the relevance of further de-icing investigations on a full-scale tail rotor.

Keywords