International Journal of Molecular Sciences (Oct 2021)

ROS-Scavengers, Osmoprotectants and Violaxanthin De-Epoxidation in Salt-Stressed <i>Arabidopsis thaliana</i> with Different Tocopherol Composition

  • Ewa Surówka,
  • Dariusz Latowski,
  • Michał Dziurka,
  • Magdalena Rys,
  • Anna Maksymowicz,
  • Iwona Żur,
  • Monika Olchawa-Pajor,
  • Christine Desel,
  • Monika Krzewska,
  • Zbigniew Miszalski

DOI
https://doi.org/10.3390/ijms222111370
Journal volume & issue
Vol. 22, no. 21
p. 11370

Abstract

Read online

To determine the role of α- and γ-tocopherol (TC), this study compared the response to salt stress (200 mM NaCl) in wild type (WT) Arabidopsis thaliana (L.) Heynh. And its two mutants: (1) totally TC-deficient vte1; (2) vte4 accumulating γ-TC instead of α-TC; and (3) tmt transgenic line overaccumulating α-TC. Raman spectra revealed that salt-exposed α-TC accumulating plants were more flexible in regulating chlorophyll, carotenoid and polysaccharide levels than TC deficient mutants, while the plants overaccumulating γ-TC had the lowest levels of these biocompounds. Tocopherol composition and NaCl concentration affected xanthophyll cycle by changing the rate of violaxanthin de-epoxidation and zeaxanthin formation. NaCl treated plants with altered TC composition accumulated less oligosaccharides than WT plants. α-TC deficient plants increased their oligosaccharide levels and reduced maltose amount, while excessive accumulation of α-TC corresponded with enhanced amounts of maltose. Salt-stressed TC-deficient mutants and tmt transgenic line exhibited greater proline levels than WT plants, lower chlorogenic acid levels, and lower activity of catalase and peroxidases. α-TC accumulating plants produced more methylated proline- and glycine- betaines, and showed greater activity of superoxide dismutase than γ-TC deficient plants. Under salt stress, α-TC demonstrated a stronger regulatory effect on carbon- and nitrogen-related metabolites reorganization and modulation of antioxidant patterns than γ-TC. This suggested different links of α- and γ-TCs with various metabolic pathways via various functions and metabolic loops.

Keywords