Scientific Reports (Feb 2020)

Nitrogen supply modulates nitrogen remobilization and nitrogen use of wheat under supplemental irrigation in the North China Plain

  • Xuejiao Zheng,
  • Zhenwen Yu,
  • Yongli Zhang,
  • Yu Shi

DOI
https://doi.org/10.1038/s41598-020-59877-5
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Excessive nitrogen (N) input and irrigation exacerbate N leaching in winter wheat production in the North China Plain (NCP). To explore the optimal N for better N remobilization and higher N utilization of wheat under water-saving irrigation will be conductive to less environmental contamination. A field experiment was conducted at 300 (N300), 240 (N240), 180 (N180), and 0 (N0) kg N ha−1 of N application under supplemental irrigation (SI) that brought the relative soil water content (RSWC) to 70% at jointing and 65% at anthesis. Compared with N0, N180 improved the free amino acid content in the flag leaf and grain after anthesis, dry matter and plant N accumulation at maturity, N translocation amount of vegetable organs and its contribution to grain from anthesis to maturity. Compared to N240 and N300, N180 increased the N translocation efficiency of vegetable organs, and reduced the soil NO3-N residue in the 60–180 cm soil layer, which contributing to no significant reduction in grain yield and grain protein yield, but higher grain N recovery efficiency (GREN), N recovery efficiency (REN), and N partial factor productivity (PFPN). Positive relationships were found between leaf N translocation efficiency and grain yield, grain protein yield, PFPN, GREN, and REN. Therefore, N180 is appropriate to obtain a steady grain yield over 7.5 t ha−1 for at least 2 years under SI based on RSWC in the NCP.