Frontiers in Physiology (Jun 2020)

Study of sRAGE, HMGB1, AGE, and S100A8/A9 Concentrations in Plasma and in Serum-Extracted Extracellular Vesicles of Pregnant Women With Preterm Premature Rupture of Membranes

  • Damien Bouvier,
  • Damien Bouvier,
  • Yves Giguère,
  • Yves Giguère,
  • Loïc Blanchon,
  • Emmanuel Bujold,
  • Emmanuel Bujold,
  • Bruno Pereira,
  • Nathalie Bernard,
  • Denis Gallot,
  • Denis Gallot,
  • Vincent Sapin,
  • Vincent Sapin,
  • Jean-Claude Forest,
  • Jean-Claude Forest

DOI
https://doi.org/10.3389/fphys.2020.00609
Journal volume & issue
Vol. 11

Abstract

Read online

Preterm premature rupture of membranes (PPROM), defined as rupture of fetal membranes prior to 37 weeks of gestation, complicates approximately 2–4% of pregnancies and is responsible for 40% of all spontaneous preterm births. PPROM arises from complex pathophysiological pathways with a key actor: inflammation. Sterile inflammation is a feature of senescence-associated fetal membrane maturity. During specific steps of sterile inflammation, cells also release highly inflammatory damage-associated molecular pattern markers (DAMPs), such as high-mobility group box 1 (HMGB1) or S100A8/A9, known to link and activate the receptor for advanced glycation end products (RAGE). The objective of this study was to measure longitudinally during pregnancy concentrations of the soluble form of RAGE (sRAGE) and its main ligands (AGE, HMGB1, S100A8/A9) in blood specimens. We studied 246 pregnant women (82 with PPROM and 164 matched control pregnant women without complications) from a cohort of 7,866 pregnant women recruited in the first trimester and followed during pregnancy until delivery. sRAGE, AGE, HMGB1, and S100A8/A9 concentrations were measured in plasma and in serum-extracted extracellular vesicles from first trimester (T1), second trimester (T2), and delivery (D). In plasma, we observed, in both PPROM and control groups, (i) a significant increase of HMGB1 concentrations between T1 vs. T2, T1 vs. D, but not between T2 vs. D; (ii) a significant decrease of sRAGE concentrations between T1 and T2 and a significant increase between T2 and D; (iii) a significant decrease of AGE from T1 to D; (iv) no significant variation of S100A8/A9 between trimesters. In intergroup comparisons (PPROM vs. control group), there were no significant differences in time variation taking into account the matching effects. There was a correlation between plasma and serum-extracted extracellular vesicle concentrations of sRAGE, AGE, HMGB1, and S100A8/A9. Our results suggest that the rupture of fetal membranes (physiological or premature) is accompanied by a variation in plasma concentrations of sRAGE, HMGB1, and AGE. The study of RAGE and its main ligands in extracellular vesicles did not give additional insight into the pathophysiological process conducting to PPROM.

Keywords