Ultrasonics Sonochemistry (Nov 2023)

Monitoring effects of hydrodynamic cavitation pretreatment of sodium oleate on the aggregation of fine diaspore particles through small-angle laser scattering

  • Weiguang Zhou,
  • Xinran Liu,
  • Yufeng Long,
  • Guangyuan Xie,
  • Yanfei Chen

Journal volume & issue
Vol. 100
p. 106574

Abstract

Read online

Hydrodynamic cavitation (HC) enhanced fine particle aggregation could be largely due to the generation of tiny bubbles and their role in bridging particles. However, the lack of adequate characterizations of aggregates severally limits our further understanding of the associated aggregation behaviors. In this study, the aggregation of fine diaspore particles was comparatively investigated in sodium oleate (NaOl) solutions with and without HC pretreatment through the small-angle laser scattering (SALS) technique in a shear-induced aggregation (SIA) system. Results showed that HC pretreatment caused the formation of bulk nanobubbles (BNBs), which significantly modified the particle interactions and thereby modified the size and mass fractal dimension (Df) of aggregates under different SIA conditions. Although HC pretreatment did not noticeably alter the gradual change trend of aggregate size and structure characteristics under specific variables, BNBs bridging facilitated the aggregation process towards the diffusion-limited cluster aggregation model, resulting in the formation of larger but looser aggregates. This effect was more pronounced under relatively high NaOl concentrations. Apart from BNBs, the aggregation was also affected by cavitation bubbles formed during shear cavitation, which was more significant under high stirring intensity conditions (i.e., 1800 rpm) than the low stirring intensity conditions (i.e., 600 rpm).

Keywords