Frontiers in Bioscience-Landmark (May 2021)

Acetylsalicylic acid improves cognitive performance in sleep deprived adult Zebrafish (Danio rerio) model

  • Muhammed Bishir,
  • Muhammed Aslam,
  • Abid Bhat,
  • Bipul Ray,
  • Preetham Elumalai,
  • Jyothi Priya R,
  • Luay Rashan,
  • Jian Yang,
  • Sulie L. Chang,
  • Musthafa Mohamed Essa,
  • Meena Kishore Sakharkar,
  • Saravana Babu Chidambaram

DOI
https://doi.org/10.52586/4928
Journal volume & issue
Vol. 26, no. 6
pp. 114 – 124

Abstract

Read online

Sleep deprivation (SD) is commonly associated with decreased attention, reduced responsiveness to external stimuli, and impaired locomotor and cognitive performances. Strong evidence indicates that SD disrupts neuro-immuno-endocrine system which is also linked to cognitive function. Recently Zebrafish have emerged as a powerful model sharing organizational and functional characteristics with other vertebrates, providing great translational relevance with rapid and reliable screening results. In the current study, we examined the effects of acetylsalicylic acid (aspirin) on cognitive and locomotor activity in sleep deprived Zebrafish model. Learning and memory were assessed by T-maze and locomotor activity was assessed by partition preference and swimming time in spinning tasks. Furthermore, brain bioavailability of aspirin was determined by high performance liquid chromatography. Following drug exposure and tasks, histopathology of the brain was performed. It was observed that three-day SD significantly reduces learning and memory and locomotion in the Zebrafish. Aspirin was found to restore SD induced cognitive decline and improve the locomotor functions. Neuro-inflammation and impaired functional network connectivity is linked to cognitive defects, which implicate the possible benefits of immunotherapeutics. In the present study, aspirin decreased neutrophil infiltration, and increased spine density in dentate gyrus granular and shrinkage and basophil in the CA1 neurons of hippocampus. This hints the benefit of aspirin on neuroimmune functions in sleep deprived fish and warrants more studies to establish the clear molecular mechanism behind this protective effect.

Keywords