Agronomy (Aug 2020)

Response of Switchgrass Grown for Forage and Bioethanol to Nitrogen, Phosphorus, and Potassium on Semiarid Marginal Land

  • Chao-Chen Tang,
  • Li-Pu Han,
  • Guang-Hui Xie

DOI
https://doi.org/10.3390/agronomy10081147
Journal volume & issue
Vol. 10, no. 8
p. 1147

Abstract

Read online

A two-year nutrient omission trial was conducted on semiarid wasteland to determine the effects of nitrogen (N), phosphorus (P), and potassium (K) on the chemical composition and theoretical ethanol yield (TEY) of switchgrass (Panicum virgatum L.). The fertilizer treatments were the following: NPK, PK, NK, NP, and no nutrient inputs (CK). Results indicated that the crude protein (CP) content and protein yield of switchgrass aboveground biomass decreased significantly in the PK treatment (N omission) and the CK, compared with the NPK treatment. The omission of N, P, or K did not significantly affect the other feed and energy quality indicators. When averaged across the two years, the neutral- and acid-detergent fiber contents were lower in the NPK and NP treatments, but the CP, dry matter digestibility, dry matter intake, total digestible nutrients, net energy for lactation, and relative feed value were higher, indicating that the suitable application with combination of N and P was helpful to improve the forage quality of switchgrass. In PK and CK treatments, the contents of soluble sugar, cellulose, and hemicellulose were higher but that of ash was lower than that in other three treatments, indicating that no N application meant better quality of switchgrass aboveground biomass for bioethanol production. The TEY at NPK was 2532 L ha−1 in 2015 and 2797 L ha−1 in 2016; in particular, the TEY decreased significantly by 15.1% in PK, 14.7% in NK, 10.5% in NP, and 29.9% in CK in 2016. To conclude, N was the most limiting factor in switchgrass productivity and the combined N, P, and K nutrient supply management strategy is recommended based on the consideration of quality and quantity of switchgrass as forage and bioenergy feedstock on semiarid marginal land.

Keywords