Carbon Nanodot–Microbe–Plant Nexus in Agroecosystem and Antimicrobial Applications
József Prokisch,
Duyen H. H. Nguyen,
Arjun Muthu,
Aya Ferroudj,
Abhishek Singh,
Shreni Agrawal,
Vishnu D. Rajput,
Karen Ghazaryan,
Hassan El-Ramady,
Mahendra Rai
Affiliations
József Prokisch
Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
Duyen H. H. Nguyen
Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
Arjun Muthu
Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
Aya Ferroudj
Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
Abhishek Singh
Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
Shreni Agrawal
Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India
Vishnu D. Rajput
Academy of Biology and Biotechnology, Southern Federal University, Rostov on Don 344006, Russia
Karen Ghazaryan
Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
Hassan El-Ramady
Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
Mahendra Rai
Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial–microbe–plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial–microbe–plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study’s nexus, more insights on the carbon nanodot–microbe–plant nexus were discussed along with the role of the new frontier in nano-tellurium–microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.