Sensors (Mar 2021)

Fingerprint Presentation Attack Detection Utilizing Spatio-Temporal Features

  • Anas Husseis,
  • Judith Liu-Jimenez,
  • Raul Sanchez-Reillo

DOI
https://doi.org/10.3390/s21062059
Journal volume & issue
Vol. 21, no. 6
p. 2059

Abstract

Read online

This paper presents a novel mechanism for fingerprint dynamic presentation attack detection. We utilize five spatio-temporal feature extractors to efficiently eliminate and mitigate different presentation attack species. The feature extractors are selected such that the fingerprint ridge/valley pattern is consolidated with the temporal variations within the pattern in fingerprint videos. An SVM classification scheme, with a second degree polynomial kernel, is used in our presentation attack detection subsystem to classify bona fide and attack presentations. The experiment protocol and evaluation are conducted following the ISO/IEC 30107-3:2017 standard. Our proposed approach demonstrates efficient capability of detecting presentation attacks with significantly low BPCER where BPCER is 1.11% for an optical sensor and 3.89% for a thermal sensor at 5% APCER for both.

Keywords