Applied Sciences (Sep 2023)

Evaluation of Thermodynamic and Chemical Kinetic Models for Hypersonic and High-Temperature Flow Simulation

  • Wei Zhao,
  • Xinglian Yang,
  • Jingying Wang,
  • Yongkang Zheng,
  • Yue Zhou

DOI
https://doi.org/10.3390/app13179991
Journal volume & issue
Vol. 13, no. 17
p. 9991

Abstract

Read online

Significant thermochemical nonequilibrium effects always exist in the flow field around hypersonic vehicle at extreme flight condition. Previous studies have proposed various thermodynamic and chemical kinetic models to describe the thermochemical nonequilibrium processes in hypersonic and high-temperature flow. However, different selections from such models might lead to remarkable variations in computational burden and prediction accuracy, which is still a matter of being unclear. In the present study, different commonly studied models for calculating the thermochemical nonequilibrium are systematically evaluated. The 5-, 7- and 11-species chemical kinetic models of Dunn-Kang, Gupta and Park together with the one- and two-temperature models are employed respectively to simulate the hypersonic flows over a standard cylinder with the radius of 1 m by HyFLOW, which is a commercial software based on the numerical solution of Navier-Stokes equations. Three flight conditions of FIRE Ⅱ classical flight trajectory are employed in the study. It shows that the differences between the results of the Dunn-Kang, Gupta and Park chemical kinetic models with the same number of species are small, but the Gupta model predicts the most conservative values of the wall heat flux. When only the order of magnitude and distribution trends of the pressure and wall heat flux are concerned, the one-temperature model combined with 5-species chemical reaction model can be used for a rapid prediction. While the accurate flow solution is required, the two-temperature model conjugated with Gupta 11-species model is recommended, especially at the conditions of extremely high altitude and Mach number.

Keywords