Symmetry (Jul 2022)

Confidence Intervals for Comparing the Variances of Two Independent Birnbaum–Saunders Distributions

  • Wisunee Puggard,
  • Sa-Aat Niwitpong,
  • Suparat Niwitpong

DOI
https://doi.org/10.3390/sym14071492
Journal volume & issue
Vol. 14, no. 7
p. 1492

Abstract

Read online

Fatigue in a material occurs when it is subjected to fluctuating stress and strain, which usually results in failure due to the accumulated damage. In statistics, asymmetric distribution, which is commonly used for describing the fatigue life of materials, is the Birnbaum–Saunders (BS) distribution. This distribution can be transform to the normal distribution, which is symmetrical. Furthermore, variance is used to examine the dispersion of the fatigue life data. However, comparing the variances of two independent samples that follow BS distributions has not previously been reported. To accomplish this, we propose methods for providing the confidence interval for the ratio of variances of two independent BS distributions based on the generalized fiducial confidence interval (GFCI), a Bayesian credible interval (BCI), and the highest posterior density (HPD) intervals based on a prior distribution with partial information (HPD-PI) and a proper prior with known hyperparameters (HPD-KH). A Monte Carlo simulation study was carried out to examine the efficacies of the methods in terms of their coverage probabilities and average lengths. The simulation results indicate that the HPD-PI performed satisfactorily for all sample sizes investigated. To illustrate the efficacies of the proposed methods with real data, they were also applied to study the confidence interval for the ratio of the variances of two 6061-T6 aluminum coupon fatigue-life datasets.

Keywords