Remote Sensing (Jan 2020)

Multi-View Features Joint Learning with Label and Local Distribution Consistency for Point Cloud Classification

  • Guofeng Tong,
  • Yong Li,
  • Dong Chen,
  • Shaobo Xia,
  • Jiju Peethambaran,
  • Yuebin Wang

DOI
https://doi.org/10.3390/rs12010135
Journal volume & issue
Vol. 12, no. 1
p. 135

Abstract

Read online

In outdoor Light Detection and Ranging (lidar)point cloud classification, finding the discriminative features for point cloud perception and scene understanding represents one of the great challenges. The features derived from defect-laden (i.e., noise, outliers, occlusions and irregularities) and raw outdoor LiDAR scans usually contain redundant and irrelevant information which adversely affects the accuracy of point semantic labeling. Moreover, point cloud features of different views have a capability to express different attributes of the same point. The simplest way of concatenating these features of different views cannot guarantee the applicability and effectiveness of the fused features. To solve these problems and achieve outdoor point cloud classification with fewer training samples, we propose a novel multi-view features and classifiers’ joint learning framework. The proposed framework uses label consistency and local distribution consistency of multi-space constraints for multi-view point cloud features extraction and classification. In the framework, the manifold learning is used to carry out subspace joint learning of multi-view features by introducing three kinds of constraints, i.e., local distribution consistency of feature space and position space, label consistency among multi-view predicted labels and ground truth, and label consistency among multi-view predicted labels. The proposed model can be well trained by fewer training points, and an iterative algorithm is used to solve the joint optimization of multi-view feature projection matrices and linear classifiers. Subsequently, the multi-view features are fused and used for point cloud classification effectively. We evaluate the proposed method on five different point cloud scenes and experimental results demonstrate that the classification performance of the proposed method is at par or outperforms the compared algorithms.

Keywords