Forests (Oct 2023)

Changes in Soil Properties and Enzyme Stoichiometry in Three Different Forest Types Changed to Tea Plantations

  • Ying Li,
  • Jinlin Zhang,
  • Qingyan Qiu,
  • Yan Zhou,
  • Weibin You

DOI
https://doi.org/10.3390/f14102043
Journal volume & issue
Vol. 14, no. 10
p. 2043

Abstract

Read online

Understanding the characteristics and driving factors of soil carbon, nitrogen, phosphorus, and enzyme stoichiometry during land use/cover change is of great significance for assessing microbial nutrient restriction and sustainable land development during the process. China, the world’s largest tea producer, is witnessing a significant expansion of tea plantations into previously forested areas. We performed field sampling in three forest types with the area partially converted to tea plantations in Wuyishan National Park. We examined the changes in soil carbon (TC), nitrogen (TN), phosphorus (TP), and three kinds of extracellular enzyme activities, β-glucosidase (BG), β-n-acetylglucosidase (NAG), and acid phosphatase (ACP). By analyzing the enzyme stoichiometric ratio, vector length (VL), and vector angle (VA), the relative nutrient limitations of soil microorganisms were explored. The results showed that soil TC and TN decreased significantly (p p C/N), enzyme carbon:phosphorus ratios (EC/P), enzyme nitrogen:phosphorus ratios (EN/P), VL, or VA (p > 0.05). Through the analysis of soil enzyme stoichiometry, it was found that forest soil was generally limited by P, which was, to some extent, relieved after the conversion to tea plantation. Redundancy analysis showed that TC, TN, and the C:N ratio were the main factors influencing enzyme activity and stoichiometry. These results indicated that land use/cover change had significant effects on soil nutrient status, enzyme activity, and stoichiometry. Soil enzyme activity is very sensitive to the changes in soil nutrients and can reflect the restriction of soil nutrients more accurately.

Keywords