Informatics in Medicine Unlocked (Jan 2016)

A metaheuristic optimization framework for informative gene selection

  • Kaberi Das,
  • Debahuti Mishra,
  • Kailash Shaw

Journal volume & issue
Vol. 4
pp. 10 – 20

Abstract

Read online

This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitness of the randomly selected solutions of binary strings and then HS ranks the solutions in descending order of their fitness. In the second phase, the offsprings are generated using crossover and mutation operations of GA and finally, those offsprings were selected for the next generation whose fitness value is more than their parents evaluated by SVM classifier. The accuracy of the final gene subsets obtained from this model has been evaluated using SVM classifiers. The merit of this approach is analyzed by experimental results on five benchmark datasets and the results showed an impressive accuracy over existing feature selection approaches. The occurrence of gene subsets selected from this model have also been computed and the most often selected gene subsets with the probability of [0.1–0.9] have been chosen as optimal sets of informative genes. Finally, the performance of those selected informative gene subsets have been measured and established through probabilistic measures. Keywords: Gene Selection, Metaheuristic, Harmony Search Algorithm, Genetic Algorithm, SVM