APL Materials (Jun 2018)

Research Update: Focused ion beam direct writing of magnetic patterns with controlled structural and magnetic properties

  • Michal Urbánek,
  • Lukáš Flajšman,
  • Viola Křižáková,
  • Jonáš Gloss,
  • Michal Horký,
  • Michael Schmid,
  • Peter Varga

DOI
https://doi.org/10.1063/1.5029367
Journal volume & issue
Vol. 6, no. 6
pp. 060701 – 060701-7

Abstract

Read online

Focused ion beam irradiation of metastable Fe78Ni22 thin films grown on Cu(100) substrates is used to create ferromagnetic, body-centered cubic patterns embedded into paramagnetic, face-centered-cubic surrounding. The structural and magnetic phase transformation can be controlled by varying parameters of the transforming gallium ion beam. The focused ion beam parameters such as the ion dose, number of scans, and scanning direction can be used not only to control a degree of transformation but also to change the otherwise four-fold in-plane magnetic anisotropy into the uniaxial anisotropy along a specific crystallographic direction. This change is associated with a preferred growth of specific crystallographic domains. The possibility to create magnetic patterns with continuous magnetization transitions and at the same time to create patterns with periodical changes in magnetic anisotropy makes this system an ideal candidate for rapid prototyping of a large variety of nanostructured samples. Namely, spin-wave waveguides and magnonic crystals can be easily combined into complex devices in a single fabrication step.