Tongxin xuebao (Feb 2019)
Efficient privacy-preserving image retrieval scheme over outsourced data with multi-user
Abstract
The traditional privacy-preserving image retrieval schemes not only bring large computational and communication overhead,but also cannot protect the image and query privacy in multi-user scenarios.To solve above problems,an efficient privacy-preserving content-based image retrieval scheme was proposed in multi-user scenarios.The scheme used Euclidean distance comparison technique to rank the pictures according to similarity of picture feature vectors and return top-k returned.Meanwhile,the efficient key conversion protocol designed in proposed image retrieval scheme allowed each search user to generate queries based on his own private key so that he can retrieval encrypted images generated by different data owners.Strict security analysis shows that the user privacy and cloud data security can be well protected during the image retrieval process,and the performance analysis using real-world dataset shows that the proposed image retrieval scheme is efficient and feasible in practical applications.