European Journal of Inflammation (Mar 2021)

Inhibitory effect of desflurane on degranulation of mast cells induced by lateral ventricular injection of stimulator-C48/80 in C57BL/6 male mice

  • ZhiYang Yu,
  • Yang Liu,
  • Mi Tian,
  • LiDong Zhang,
  • Hao Cheng,
  • SiHai Zhu,
  • WeiYan Li

DOI
https://doi.org/10.1177/20587392211000891
Journal volume & issue
Vol. 19

Abstract

Read online

Inhalation of anesthetic agents have been observed to confer neuroprotection for decades. The present study was intended to determine whether desflurane (DES) prohibits mast cells (MCs) from degranulation induced by lateral ventricular injection (LVC) with Compound 48/80 (C48/80) in C57BL/6. Total 100 mice were recruited to this study, but only 88 male mice (20–24 weeks) were survived from the procedure, and randomized and allocated into four groups: (A) the saline group; (B) the C48/80 group; (C) the sodium cromoglycate (CRO + C48/80) group; (D) 7.5% DES preconditioning for 2 h + C48/80 lateral ventricular injection (DES + C48/80) group. The slices of mice brain thalamus were performed for toluidine blue staining (MCs) and immunochemistry (fluorescence of Iba1 and GFAP, respectively), and brain tissues were extracted to probe IL-6, TNF-α, NF-κB (p65), and TLR4 against GAPDH by western blotting. Our results demonstrated that administration of C48/80 provoked degranulation of mast cells at thalamus, increasing the fluorescence intensities of Iba1 and GFAP, and over-expressing IL-6, TNF-α, NF-κB(p65), and TLR4. However, pre-conditioning inhalation of DES prohibited MCs from degranulation, diminishing the fluorescent intensities of Iba1 and GFAP, decreasing expressed levels of IL-6, TNF-α, NF-κB(p65), as well as TLR4. It suggests inhalation DES could inhibit the neuroinflammation and deactivate glial and astrocytes via direct prohibiting degranulation of MCs at thalamus in the central nervous system (CNS).