Advanced Science (Oct 2023)

Steerable and Agile Light‐Fueled Rolling Locomotors by Curvature‐Engineered Torsional Torque

  • Jun‐Chan Choi,
  • Jisoo Jeon,
  • Jae‐Won Lee,
  • Asad Nauman,
  • Jae Gyeong Lee,
  • Woongbi Cho,
  • Chanwoo Lee,
  • Young‐Min Cho,
  • Jeong Jae Wie,
  • Hak‐Rin Kim

DOI
https://doi.org/10.1002/advs.202304715
Journal volume & issue
Vol. 10, no. 30
pp. n/a – n/a

Abstract

Read online

Abstract On‐demand photo‐steerable amphibious rolling motions are generated by the structural engineering of monolithic soft locomotors. Photo‐morphogenesis of azobenzene‐functionalized liquid crystal polymer networks (azo‐LCNs) is designed from spiral ribbon to helicoid helices, employing a 270° super‐twisted nematic molecular geometry with aspect ratio variations of azo‐LCN strips. Unlike the intermittent and biased rolling of spiral ribbon azo‐LCNs with center‐of‐mass shifting, the axial torsional torque of helicoid azo‐LCNs enables continuous and straight rolling at high rotation rates (≈720 rpm). Furthermore, center‐tapered helicoid structures with wide edges are introduced for effectively accelerating photo‐motilities while maintaining directional controllability. Irrespective of surface conditions, the photo‐induced rotational torque of center‐tapered helicoid azo‐LCNs can be transferred to interacting surfaces, as manifested by steep slope climbing and paddle‐like swimming multimodal motilities. Finally, the authors demonstrate continuous curvilinear guidance of soft locomotors, bypassing obstacles and reaching desired destinations through real‐time on‐demand photo‐steering.

Keywords