Artificial Cells, Nanomedicine, and Biotechnology (Jan 2021)
Microwave assisted green synthesis of silver nanoparticles for optical, catalytic, biological and electrochemical applications
Abstract
Plant-derived nanoparticles have multi-functionalities owing to their ecological origin and biocompatible nature. A novel and stable silver nanoparticle (AgNP) was reported here using Cyanthillium cinereum (C. cinereum) as a reducing as well as capping agent by rapid microwave-assisted green method. The synthesized nanoparticles revealed their crystalline and spherical nature with an average size of 19.25 ± 0.44 nm in HR-TEM analysis. The excitation of electrons from occupied d-bands to states above the Fermi level while employing photoluminescence studies of AgNP indicated their awesome optical properties. Rapid decomposition of dangerous organic dyes like methylene blue and fuchsine in the catalytic presence of AgNP was evidenced from simple UV–visible spectral analysis. In vitro antioxidant potential assessed by DPPH assay indicated an IC50 value of 40.80 ± 0.14 μg/mL for the new AgNP. A substantial control on the growth of pathogenic bacteria such as Staphylococcus aureus and Klebsiella pneumonia can be achieved by synthesized nanoparticles as demonstrated by the well diffusion method. AgNP was also functioned as a non-enzymatic electrochemical sensor with a sharp oxidation peak with peak potentials at 0.366 V and it has a wide application as a bio sensor in neurobiology especially in the detection of neurotransmitters like dopamine with high sensitivity.
Keywords