Complex & Intelligent Systems (Feb 2024)

Team formation through an assessor: choosing MARL agents in pursuit–evasion games

  • Yue Zhao,
  • Lushan Ju,
  • Josè Hernández-Orallo

DOI
https://doi.org/10.1007/s40747-023-01336-5
Journal volume & issue
Vol. 10, no. 3
pp. 3473 – 3492

Abstract

Read online

Abstract Team formation in multi-agent systems usually assumes the capabilities of each team member are known, and the best formation can be derived from that information. As AI agents become more sophisticated, this characterisation is becoming more elusive and less predictive about the performance of a team in cooperative or competitive situations. In this paper, we introduce a general and flexible way of anticipating the outcome of a game for any lineups (the agents, sociality regimes and any other hyperparameters for the team). To this purpose, we simply train an assessor using an appropriate team representation and standard machine learning techniques. We illustrate how we can interrogate the assessor to find the best formations in a pursuit–evasion game for several scenarios: offline team formation, where teams have to be decided before the game and not changed afterwards, and online team formation, where teams can see the lineups of the other teams and can be changed at any time.

Keywords