Advances in Polymer Technology (Jan 2020)
Progress of Catalytic Valorization of Bio-Glycerol with Urea into Glycerol Carbonate as a Monomer for Polymeric Materials
Abstract
Versatile polymers with highly adjustable characteristics and a broad range of applications are possibly developed owing to the contemporary industrial polymerization techniques. However, industrial production of large amounts of chemicals and polymers heavily depends on petroleum resources which are dwindling and unsustainable. Of particular interest is to utilize sustainable and green resources for the manufacture of polymeric materials. The efficient transformation of bio-glycerol to the relevant functional derivatives are being widely investigated owing to the increasing demand for enhancing the value of glycerol manufactured by biodiesel and oleochemical industries. With respect to glycerol-based polymer chemistry and technology, considering the economy and environmental benefits, using effective catalysts for the selective transformation of bio-glycerol and urea into glycerol carbonate (GC) as a polymer monomer is of great significance. In this review, recent studies on GC synthesis involving the catalysts such as zinc, magnesium, tungsten, ionic liquid-based catalysts, reaction conditions, and possible pathways are primarily described. Some critical issues and challenges with respect to the rational development of heterogeneous catalytic materials like well-balanced acid-base sites are also illustrated.