Pharmaceuticals (Jun 2022)

Rational Design by Structural Biology of Industrializable, Long-Acting Antihyperglycemic GLP-1 Receptor Agonists

  • Lei Sun,
  • Zhi-Ming Zheng,
  • Chang-Sheng Shao,
  • Zhi-Yong Zhang,
  • Ming-Wei Li,
  • Li Wang,
  • Han Wang,
  • Gen-Hai Zhao,
  • Peng Wang

DOI
https://doi.org/10.3390/ph15060740
Journal volume & issue
Vol. 15, no. 6
p. 740

Abstract

Read online

Glucagon-like peptide-1 (GLP-1) is easily degraded by dipeptidyl peptidase-4 (DPP-4) in the human body, limiting its therapeutic effect on type II diabetes. Therefore, improving GLP-1 receptor agonist (GLP-1RA) stability is a major obstacle for drug development. We analyzed human GLP-1, DPP-4, and GLP-1 receptor structures and designed three GLP-1RAs, which were introduced into fusion protein fragments and changed in the overall conformation. This modification effectively prevented GLP-1RAs from entering the DPP-4 active center without affecting GLP-1RAs’ ability to bind to GLP-1R, the new GLP-1RA hypoglycemic effect lasting for >24 h. Through molecular modeling, molecular dynamics calculation, and simulation, possible tertiary structure models of GLP-1RAs were obtained; molecular docking with DPP-4 and GLP-1R showed access to the fusion protein. The overall conformational change of GLP-1RAs prevented DPP-4 binding, without affecting GLP-1RAs’ affinity to GLP-1R. This study provides important drug design ideas for GLP-1RA development and a new example for application of structural biology-based protein design in drug development.

Keywords