Sensors (Oct 2023)

An Electrochemical Sensor of Theophylline on a Boron-Doped Diamond Electrode Modified with Nickel Nanoparticles

  • Prastika Krisma Jiwanti,
  • Anis Puspita Sari,
  • Siti Wafiroh,
  • Yeni Wahyuni Hartati,
  • Jarnuzi Gunlazuardi,
  • Yulia M. T. A. Putri,
  • Takeshi Kondo,
  • Qonita Kurnia Anjani

DOI
https://doi.org/10.3390/s23208597
Journal volume & issue
Vol. 23, no. 20
p. 8597

Abstract

Read online

Theophylline is a drug with a narrow therapeutic range. Electrochemical sensors are a potentially effective method for detecting theophylline concentration to prevent toxicity. In this work, a simple modification of a boron-doped diamond electrode using nickel nanoparticles was successfully performed for a theophylline electrochemical sensor. The modified electrode was characterized using a scanning electron microscope and X-ray photoelectron spectroscopy. Square wave voltammetry and cyclic voltammetry methods were used to study the electrochemical behavior of theophylline. The modified nickel nanoparticles on the boron-doped diamond electrode exhibited an electrochemically active surface area of 0.0081 cm2, which is larger than the unmodified boron-doped diamond’s area of 0.0011 cm2. This modified electrode demonstrated a low limit of detection of 2.79 µM within the linear concentration range from 30 to 100 µM. Moreover, the modified boron-doped diamond electrode also showed selective properties against D-glucose, ammonium sulfate, and urea. In the real sample analysis using artificial urine, the boron-doped diamond electrode with nickel nanoparticle modifications achieved a %recovery of 105.10%, with a good precision of less than 5%. The results of this work indicate that the developed method using nickel nanoparticles on a boron-doped diamond electrode is promising for the determination of theophylline.

Keywords