Thermoplastic Polyurethane Derived from CO<sub>2</sub> for the Cathode Binder in Li-CO<sub>2</sub> Battery
Haobin Wu,
Xin Huang,
Min Xiao,
Shuanjin Wang,
Dongmei Han,
Sheng Huang
Affiliations
Haobin Wu
The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang West, Guangzhou 510275, China
Xin Huang
The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang West, Guangzhou 510275, China
Min Xiao
The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang West, Guangzhou 510275, China
Shuanjin Wang
The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang West, Guangzhou 510275, China
Dongmei Han
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
Sheng Huang
The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang West, Guangzhou 510275, China
High-energy-density Li-CO2 batteries are promising candidates for large-capacity energy storage systems. However, the development of Li-CO2 batteries has been hindered by low cycle life and high overpotential. In this study, we propose a CO2-based thermoplastic polyurethane (CO2-based TPU) with CO2 adsorption properties and excellent self-healing performance to replace traditional polyvinylidene fluoride (PVDF) as the cathode binder. The CO2-based TPU enhances the interfacial concentration of CO2 at the cathode/electrolyte interfaces, effectively increasing the discharge voltage and lowering the charge voltage of Li-CO2 batteries. Moreover, the CO2 fixed by urethane groups (-NH-COO-) in the CO2-based TPU are difficult to shuttle to and corrode the Li anode, minimizing CO2 side reactions with lithium metal and improving the cycling performance of Li-CO2 batteries. In this work, Li-CO2 batteries with CO2-based TPU as the multifunctional binders exhibit stable cycling performance for 52 cycles at a current density of 0.2 A g−1, with a distinctly lower polarization voltage than PVDF bound Li-CO2 batteries.