International Journal of Prognostics and Health Management (Jul 2022)
SIMILARITY-BASED MULTI-SOURCE TRANSFER LEARNING APPROACH FOR TIME SERIES CLASSIFICATION
Abstract
This study aims to develop an effective method of classification concerning time series signals for machine state prediction to advance predictive maintenance (PdM). Conventional machine learning (ML) algorithms are widely adopted in PdM, however, most existing methods assume that the training (source) and testing (target) data follow the same distribution, and that labeled data are available in both source and target domains. For real-world PdM applications, the heterogeneity in machine original equipment manufacturers (OEMs), operating conditions, facility environment, and maintenance records collectively lead to heterogeneous distribution for data collected from different machines. This will significantly limit the performance of conventional ML algorithms in PdM. Moreover, labeling data is generally costly and time-consuming. Finally, industrial processes incorporate complex conditions, and unpredictable breakdown modes lead to extreme complexities for PdM. In this study, similarity-based multi-source transfer learning (SiMuS-TL) approach is proposed for real-time classification of time series signals. A new domain, called "mixed domain," is established to model the hidden similarities among the multiple sources and the target. The proposed SiMuS-TL model mainly includes three key steps: 1) learning group-based feature patterns, 2) developing group-based pre-trained models, and 3) weight transferring. The proposed SiMuS-TL model is validated by observing the state of the rotating machinery using a dataset collected on the Skill boss manufacturing system, publicly available standard bearing datasets, Case Western Reserve University (CWRU), and Paderborn University (PU) bearing datasets. The results of the performance comparison demonstrate that the proposed SiMuS-TL method outperformed conventional Support Vector Machine (SVM), Artificial Neural Network (ANN), and Transfer learning with neural networks (TLNN) without similarity-based transfer learning methods.
Keywords