Saudi Dental Journal (Mar 2024)
The diagnostic performance of impacted third molars in the mandible: A review of deep learning on panoramic radiographs
Abstract
Background: Mandibular third molar is prone to impaction, resulting in its inability to erupt into the oral cavity. The radiographic examination is required to support the odontectomy of impacted teeth. The use of computer-aided diagnosis based on deep learning is emerging in the field of medical and dentistry with the advancement of artificial intelligence (AI) technology. This review describes the performance and prospects of deep learning for the detection, classification, and evaluation of third molar-mandibular canal relationships on panoramic radiographs. Methods: This work was conducted using three databases: PubMed, Google Scholar, and Science Direct. Following the literature selection, 49 articles were reviewed, with the 12 main articles discussed in this review. Results: Several models of deep learning are currently used for segmentation and classification of third molar impaction with or without the combination of other techniques. Deep learning has demonstrated significant diagnostic performance in identifying mandibular impacted third molars (ITM) on panoramic radiographs, with an accuracy range of 78.91% to 90.23%. Meanwhile, the accuracy of deep learning in determining the relationship between ITM and the mandibular canal (MC) ranges from 72.32% to 99%. Conclusion: Deep learning-based AI with high performance for the detection, classification, and evaluation of the relationship of ITM to the MC using panoramic radiographs has been developed over the past decade. However, deep learning must be improved using large datasets, and the evaluation of diagnostic performance for deep learning models should be aligned with medical diagnostic test protocols. Future studies involving collaboration among oral radiologists, clinicians, and computer scientists are required to identify appropriate AI development models that are accurate, efficient, and applicable to clinical services.