Atmospheric Measurement Techniques (Nov 2020)
Validation of tropospheric NO<sub>2</sub> column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations
- G. Pinardi,
- M. Van Roozendael,
- F. Hendrick,
- N. Theys,
- N. Abuhassan,
- N. Abuhassan,
- A. Bais,
- F. Boersma,
- F. Boersma,
- A. Cede,
- A. Cede,
- J. Chong,
- S. Donner,
- T. Drosoglou,
- A. Dzhola,
- H. Eskes,
- U. Frieß,
- J. Granville,
- J. R. Herman,
- J. R. Herman,
- R. Holla,
- J. Hovila,
- H. Irie,
- Y. Kanaya,
- D. Karagkiozidis,
- N. Kouremeti,
- N. Kouremeti,
- J.-C. Lambert,
- J. Ma,
- E. Peters,
- A. Piters,
- O. Postylyakov,
- A. Richter,
- J. Remmers,
- H. Takashima,
- H. Takashima,
- M. Tiefengraber,
- M. Tiefengraber,
- P. Valks,
- T. Vlemmix,
- T. Wagner,
- F. Wittrock
Affiliations
- G. Pinardi
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
- M. Van Roozendael
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
- F. Hendrick
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
- N. Theys
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
- N. Abuhassan
- NASA/Goddard Space Flight Center, GSFC, Greenbelt, MD, USA
- N. Abuhassan
- University of Maryland, Joint Center for Earth Systems Technology, Baltimore, MD, USA
- A. Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, AUTH, Thessaloniki, Greece
- F. Boersma
- Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands
- F. Boersma
- Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands
- A. Cede
- NASA/Goddard Space Flight Center, GSFC, Greenbelt, MD, USA
- A. Cede
- LuftBlick, Innsbruck, Austria
- J. Chong
- Gwangju Institute of Science and Technology GIST, Gwangju, South Korea
- S. Donner
- Max Planck Institute for Chemistry, Mainz, Germany
- T. Drosoglou
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, AUTH, Thessaloniki, Greece
- A. Dzhola
- A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, IAP/RAS, Moscow, Russia
- H. Eskes
- Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands
- U. Frieß
- Institut für Umweltphysik, Universität Heidelberg, Heidelberg, Germany
- J. Granville
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
- J. R. Herman
- NASA/Goddard Space Flight Center, GSFC, Greenbelt, MD, USA
- J. R. Herman
- University of Maryland, Joint Center for Earth Systems Technology, Baltimore, MD, USA
- R. Holla
- German Weather Service, DWD, Hohenpeissenberg, Germany
- J. Hovila
- Finnish Meteorological Institute, FMI, Helsinki, Finland
- H. Irie
- Center for Environmental Remote Sensing, Chiba University, Chiba, Japan
- Y. Kanaya
- Research Institute for Global Change, JAMSTEC, Yokohama, Japan
- D. Karagkiozidis
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, AUTH, Thessaloniki, Greece
- N. Kouremeti
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, AUTH, Thessaloniki, Greece
- N. Kouremeti
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC), Davos Dorf, Switzerland
- J.-C. Lambert
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
- J. Ma
- Chinese Academy of Meteorological Sciences, Beijing, China
- E. Peters
- Institut für Umweltphysik, Universität Bremen, Bremen, Germany
- A. Piters
- Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands
- O. Postylyakov
- A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, IAP/RAS, Moscow, Russia
- A. Richter
- Institut für Umweltphysik, Universität Bremen, Bremen, Germany
- J. Remmers
- Max Planck Institute for Chemistry, Mainz, Germany
- H. Takashima
- Research Institute for Global Change, JAMSTEC, Yokohama, Japan
- H. Takashima
- Faculty of Science, Fukuoka University, Fukuoka, Japan
- M. Tiefengraber
- LuftBlick, Innsbruck, Austria
- M. Tiefengraber
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
- P. Valks
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, Germany
- T. Vlemmix
- Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands
- T. Wagner
- Max Planck Institute for Chemistry, Mainz, Germany
- F. Wittrock
- Institut für Umweltphysik, Universität Bremen, Bremen, Germany
- DOI
- https://doi.org/10.5194/amt-13-6141-2020
- Journal volume & issue
-
Vol. 13
pp. 6141 – 6174
Abstract
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) and direct sun NO2 vertical column network data are used to investigate the accuracy of tropospheric NO2 column measurements of the GOME-2 instrument on the MetOp-A satellite platform and the OMI instrument on Aura. The study is based on 23 MAX-DOAS and 16 direct sun instruments at stations distributed worldwide. A method to quantify and correct for horizontal dilution effects in heterogeneous NO2 field conditions is proposed. After systematic application of this correction to urban sites, satellite measurements are found to present smaller biases compared to ground-based reference data in almost all cases. We investigate the seasonal dependence of the validation results as well as the impact of using different approaches to select satellite ground pixels in coincidence with ground-based data. In optimal comparison conditions (satellite pixels containing the station) the median bias between satellite tropospheric NO2 column measurements and the ensemble of MAX-DOAS and direct sun measurements is found to be significant and equal to −34 % for GOME-2A and −24 % for OMI. These biases are further reduced to −24 % and −18 % respectively, after application of the dilution correction. Comparisons with the QA4ECV satellite product for both GOME-2A and OMI are also performed, showing less scatter but also a slightly larger median tropospheric NO2 column bias with respect to the ensemble of MAX-DOAS and direct sun measurements.