The Astrophysical Journal (Jan 2025)

The NANOGrav 15 yr Data Set: Harmonic Analysis of the Pulsar Angular Correlations

  • Gabriella Agazie,
  • Akash Anumarlapudi,
  • Anne M. Archibald,
  • Zaven Arzoumanian,
  • Jeremy G. Baier,
  • Paul T. Baker,
  • Bence Bécsy,
  • Laura Blecha,
  • Kimberly K. Boddy,
  • Adam Brazier,
  • Paul R. Brook,
  • Sarah Burke-Spolaor,
  • Rand Burnette,
  • J. Andrew Casey-Clyde,
  • Maria Charisi,
  • Shami Chatterjee,
  • Tyler Cohen,
  • James M. Cordes,
  • Neil J. Cornish,
  • Fronefield Crawford,
  • H. Thankful Cromartie,
  • Kathryn Crowter,
  • Megan E. DeCesar,
  • Paul B. Demorest,
  • Heling Deng,
  • Lankeswar Dey,
  • Timothy Dolch,
  • Elizabeth C. Ferrara,
  • William Fiore,
  • Emmanuel Fonseca,
  • Gabriel E. Freedman,
  • Emiko C. Gardiner,
  • Nate Garver-Daniels,
  • Peter A. Gentile,
  • Kyle A. Gersbach,
  • Joseph Glaser,
  • Deborah C. Good,
  • Kayhan Gültekin,
  • Jeffrey S. Hazboun,
  • Ross J. Jennings,
  • Aaron D. Johnson,
  • Megan L. Jones,
  • David L. Kaplan,
  • Luke Zoltan Kelley,
  • Matthew Kerr,
  • Joey S. Key,
  • Nima Laal,
  • Michael T. Lam,
  • William G. Lamb,
  • Bjorn Larsen,
  • T. Joseph W. Lazio,
  • Natalia Lewandowska,
  • Tingting Liu,
  • Duncan R. Lorimer,
  • Jing Luo,
  • Ryan S. Lynch,
  • Chung-Pei Ma,
  • Dustin R. Madison,
  • Alexander McEwen,
  • James W. McKee,
  • Maura A. McLaughlin,
  • Natasha McMann,
  • Bradley W. Meyers,
  • Patrick M. Meyers,
  • Chiara M. F. Mingarelli,
  • Andrea Mitridate,
  • Jonathan Nay,
  • Cherry Ng,
  • David J. Nice,
  • Stella Koch Ocker,
  • Ken D. Olum,
  • Timothy T. Pennucci,
  • Benetge B. P. Perera,
  • Polina Petrov,
  • Nihan S. Pol,
  • Henri A. Radovan,
  • Scott M. Ransom,
  • Paul S. Ray,
  • Jessie C. Runnoe,
  • Alexander Saffer,
  • Shashwat C. Sardesai,
  • Ann Schmiedekamp,
  • Carl Schmiedekamp,
  • Kai Schmitz,
  • Brent J. Shapiro-Albert,
  • Xavier Siemens,
  • Joseph Simon,
  • Magdalena S. Siwek,
  • Tristan L. Smith,
  • Sophia V. Sosa Fiscella,
  • Ingrid H. Stairs,
  • Daniel R. Stinebring,
  • Kevin Stovall,
  • Abhimanyu Susobhanan,
  • Joseph K. Swiggum,
  • Jacob Taylor,
  • Stephen R. Taylor,
  • Jacob E. Turner,
  • Caner Unal,
  • Michele Vallisneri,
  • Rutger van Haasteren,
  • Sarah J. Vigeland,
  • Haley M. Wahl,
  • Caitlin A. Witt,
  • David Wright,
  • Olivia Young,
  • The NANOGrav Collaboration

DOI
https://doi.org/10.3847/1538-4357/adc997
Journal volume & issue
Vol. 985, no. 1
p. 99

Abstract

Read online

Pulsar timing array observations have found evidence for an isotropic gravitational-wave background with the Hellings–Downs angular correlations between pulsar pairs. This interpretation hinges on the measured shape of the angular correlations, which is predominantly quadrupolar under general relativity. Here we explore a more flexible parameterization: we expand the angular correlations into a sum of Legendre polynomials and use a Bayesian analysis to constrain their coefficients with the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). When including Legendre polynomials with multipoles ℓ ≥ 2, we only find a significant signal in the quadrupole with an amplitude consistent with general relativity and nonzero at the ∼95% confidence level and a Bayes factor of 200. When we include multipoles ℓ ≤ 1, the Bayes factor evidence for quadrupole correlations decreases by more than an order of magnitude due to evidence for a monopolar signal at approximately 4 nHz, which has also been noted in previous analyses of the NANOGrav 15 yr data. Further work needs to be done in order to better characterize the properties of this monopolar signal and its effect on the evidence for quadrupolar angular correlations.

Keywords