Xibei Gongye Daxue Xuebao (Aug 2022)
Fault diagnosis and location of hydraulic system of domestic civil aircraft based on logic data
Abstract
To study the typical fault diagnosis and fault location technology of the hydraulic system of the domestic civil aircraft, the logic data of the typical fault is constructed according to the formation conditions of the fault. The operation data of the typical fault is collected, and the Bayesian network is used to realize the fault diagnosis and fault components position. First, according to the fault formation conditions in the unit operation manual of a certain type of domestic civil aircraft, referring to the construction method of the logic data, taking the typical fault of the hydraulic system as an example, the fault logic data of the domestic civil aircraft is established to intuitively reflect the logical relationship of the fault formation; secondly, based on the constructed logic data, considering the formation conditions of the fault, a Bayesian network corresponding to the logic data is established, and the logical relationship formed by the fault is represented by the value of the conditional probability distribution; obtain quick access recorder (QAR) data and its parameter information according to the input information of the logic data; finally, according to the established Bayesian network and the obtained QAR data, apply forward reasoning to realize the diagnosis of typical faults of the hydraulic system. Under the condition of partial information, reverse reasoning is applied to locate the faulty components of hydraulic system. The research shows that the proposed method can accurately diagnose faults, and can accurately locate faulty components in complete information, and give the probability of occurrence of potentially faulty components under partial information, which can effectively assist in the location of faulty components. The research work has certain reference significance for improving the fault diagnosis function of the airborne health management system and the ground health management system of domestic civil aircraft.
Keywords