Sensors (Jul 2024)

Modified Gold Screen-Printed Electrodes for the Determination of Heavy Metals

  • Consuelo Celesti,
  • Salvatore Vincenzo Giofrè,
  • Claudia Espro,
  • Laura Legnani,
  • Giovanni Neri,
  • Daniela Iannazzo

DOI
https://doi.org/10.3390/s24154935
Journal volume & issue
Vol. 24, no. 15
p. 4935

Abstract

Read online

Screen-printed electrodes (SPEs) are reliable, portable, affordable, and versatile electrochemical platforms for the real-time analytical monitoring of emerging analytes in the environmental, clinical, and agricultural fields. The aim of this study was to evaluate the electrochemical behavior of gold screen-printed electrodes (SPGEs) modified with molecules containing amino (Tr-N) or α-aminophosphonate (Tr-P) groups for the selective and sensitive detection of the toxic metal ions Pb2+ and Hg2+ in aqueous samples. After optimizing the analytical parameters (conditioning potential and time, deposition potential and time, pH and concentration of the supporting electrolyte), anodic square wave stripping voltammetry (SWASV) was used to evaluate and compare the electrochemical performance of bare or modified electrodes for the detection of Hg2+ and Pb2+, either alone or in their mixtures in the concentration range between 1 nM and 10 nM. A significative improvement in the detection ability of Pb2+ ions was recorded for the amino-functionalized gold sensor SPGE-N, while the presence of a phosphonate moiety in SPGE-P led to greater sensitivity towards Hg2+ ions. The developed sensors allow the detection of Pb2+ and Hg2+ with a limit of detection (LOD) of 0.41 nM and 35 pM, respectively, below the legal limits for these heavy metal ions in drinking water or food, while the sensitivity was 5.84 µA nM−1cm−2 and 10 µA nM−1cm−2, respectively, for Pb2+ and Hg2+. The reported results are promising for the development of advanced devices for the in situ and cost-effective monitoring of heavy metals, even in trace amounts, in water resources.

Keywords