Bi<sub>2</sub>WO<sub>6</sub>@g-C<sub>3</sub>N<sub>4</sub> Heterostructure for Cathodic Photoelectrochemical Dopamine Sensor
Zhifang Wu,
Ying Su,
Fangjie Han,
Zhishan Liang,
Dongxue Han,
Dongdong Qin,
Li Niu
Affiliations
Zhifang Wu
Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Ying Su
Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Fangjie Han
Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Zhishan Liang
Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Dongxue Han
Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Dongdong Qin
Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Li Niu
Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
A simple and low-cost cathodic photoelectrochemical (PEC) sensor based on Bi2WO6@g-C3N4 was designed for dopamine (DA) detection. The Bi2WO6 nanoflower was first prepared using a simple hydrothermal method followed by the combination with g-C3N4 nanosheet to form the Bi2WO6@g-C3N4 heterostructure. The heterostructure can extend the absorbance to the visible region and accelerate the transfer of charge carriers. Furthermore, DA easily coordinates with exposed Bi3+ on the Bi2WO6 surface and forms the charge-transfer complex to further enhance the cathodic photocurrent. Under optimal conditions, there are two linear relationships between the concentration of DA and photocurrent intensity. The linear ranges are 0.1–10 µM and 10–250 µM, with a sensitive detection limit (LOD) of 28 nM. Notably, the real sample of human blood serum analysis further revealed the accuracy and feasibility of the Bi2WO6@g-C3N4-based PEC platform. Convincingly, the heterostructure of Bi2WO6 and g-C3N4 opened up a new avenue for the construction of DA analysis.