Applied Sciences (Nov 2021)
Influence of Drift on Robot Repeatability and Its Compensation
Abstract
This paper presents an approach to compensate for the effect of thermal expansion on the structure of an industrial robot and thus to reduce the repeatability difference of the robot in cold and warm conditions. In contrast to previous research in this area that deals with absolute accuracy, this article is focused on determining achievable repeatability. To unify and to increase the robot repeatability, the measurements with highly accurate sensors were performed under different conditions on an industrial robot ABB IRB1200, which was equipped with thermal sensors, mounted on a pre-defined position around joints. The performed measurements allowed to implement a temperature-based prediction model of the end effector positioning error. Subsequent tests have shown that the implemented model used for the error compensation proved to be highly effective. Using the methodology presented in this article, the impact of drift can be reduced by up to 89.9%. A robot upgraded with a compensation principle described in this article does not have to be warmed up as it works with the same low repeatability error in the entire range of the achievable temperatures.
Keywords