International Journal of Molecular Sciences (Apr 2015)

Crystal Structure, Chemical Bonding and Magnetism Studies for Three Quinary Polar Intermetallic Compounds in the (Eu1−xCax)9In8(Ge1−ySny)8 (x = 0.66, y = 0.03) and the (Eu1−xCax)3In(Ge3−ySn1+y) (x = 0.66, 0.68; y = 0.13, 0.27) Phases

  • Hyein Woo,
  • Eunyoung Jang,
  • Jin Kim,
  • Yunho Lee,
  • Jongsik Kim,
  • Tae-Soo You

DOI
https://doi.org/10.3390/ijms16049017
Journal volume & issue
Vol. 16, no. 4
pp. 9017 – 9036

Abstract

Read online

Three quinary polar intermetallic compounds in the (Eu1−xCax)9In8(Ge1−ySny)8 (x = 0.66, y = 0.03) and the (Eu1−xCax)3In(Ge3-ySn1+y) (x = 0.66, 0.68; y = 0.13, 0.27) phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn)4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like “12-membered rings” for the (Eu1−xCax)9In8(Ge1−ySny)8 series or the cis-trans Ge/Sn-chains for the (Eu1−xCax)3In(Ge3−ySn1+y) series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11%) occurs at the In(Ge/Sn)4 tetrahedron in the (Eu1−xCax)9In8(Ge1−ySny)8 series, whereas both a complete and a partial substitution (up to 27%) are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn)4 tetrahedron in the (Eu1−xCax)3In(Ge3−ySn1+y) series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1)Ca1.98InGe2.87(1)Sn1.13.

Keywords