Applied Sciences (Mar 2024)
The Use of Coagulation–Flocculation for Industrial Colored Wastewater Treatment—(I) The Application of Hybrid Materials
Abstract
Polluting species released in industrial-colored effluents contaminate water, degrading its quality and persisting in the aquatic environment; therefore, it must be treated for safe discharge or onsite reuse/recycling to ensure a fresh water supply. This review has the principal goal of facilitating understanding of some important issues concerning wastewater (WW) treatment systems, mainly based on a coagulation–flocculation step, as follows: (i) the significance of and facilities offered by specialized treatment processes, including the coagulation–flocculation step as a single or associated step (i.e., coagulation–flocculation followed by sedimentation/filtration or air flotation); (ii) the characteristics of industrial-colored WW, especially WW from the textile industry, which can be reduced via the coagulation–flocculation step; (iii) primary and secondary groups of hybrid materials and their characteristics when used as coagulants–flocculants; (iv) the influence of different process operating variables and treatment regimens on the efficiency of the studied treatment step; and (v) the benefits of using hybrid materials in colored WW treatment processes and its future development perspectives. The consulted scientific reports underline the benefits of applying hybrid materials as coagulants–flocculants in colored textile WW treatment, mainly fresh, natural hybrid materials that can achieve high removal rates, e.g., dye and color removal of >80%, heavy metals, COD and BOD of >50%, or turbidity removal of >90%. All of the reported data underline the feasibility of using these materials for the removal of colored polluting species (especially dyes) from industrial effluents and the possibility of selecting the adequate one for a specific WW treatment system.
Keywords