The Open Journal of Astrophysics (Sep 2024)
Merger Precursor: Year-long Transients Preceding Mergers of Low-mass Stripped Stars with Compact Objects
Abstract
Binary mass transfer can occur at high rates due to rapid expansion of the donor's envelope. In the case where mass transfer is unstable, the binary can rapidly shrink its orbit and lead to a merger. In this work we consider the appearance of the system preceding merger, specifically for the case of a low-mass ($\approx 2.5$-$3~M_\odot$) helium star with a neutron star (NS) companion. Modeling the mass transfer history as well as the wind launched by super-Eddington accretion onto the NS, we find that such systems can power slowly rising transients with timescales as long as years, and luminosities of $\sim 10^{40}$-$10^{41}$ erg s$^{-1}$ from optical to UV. The final explosion following the merger (or core-collapse of the helium star in some cases) leads to an interaction-powered transient with properties resembling Type Ibn supernovae (SNe), possibly with a bright early peak powered by shock cooling emission for merger-powered explosions. We apply our model to the Type Ibn SN 2023fyq, that displayed a long-term precursor activity from years before the terminal explosion.