Sensors (Apr 2005)

Direct Electrochemistry of Redox Proteins and Enzymes Promoted by Carbon Nanotubes

  • Chenxin Cai,
  • Ping Wu,
  • Yafen Lü,
  • Yajing Yin

DOI
https://doi.org/10.3390/s5040220
Journal volume & issue
Vol. 5, no. 4
pp. 220 – 234

Abstract

Read online

The redox protein and enzyme, such as hemoglobin (Hb), horseradish peroxidase(HRP) and glucose oxidase (GOx), was immobilized on the surface of the carbon nanotubemodified glassy carbon (CNT/GC) electrode, respectively. The cyclic voltammetric resultsindicated that the redox protein and enzyme underwent effective and stable direct electrontransfer reaction with a pair of nearly symmetrical redox peaks. The formal redox potential,E0’, was almost independent on the scan rates, the average value of E0’ for Hb, HRP andGOx was –0.343 ± 0.001, –0.319 ± 0.002 and –0.456 ± 0.0008 V (vs. SCE,pH 6.9),respectively. The dependence of E0’ on the pH solution indicated that the direct electrontransfer of Hb and HRP was a one-electron-transfer reaction process coupled with oneproton-transfer, while the GOx was a two-electron-transfer coupled with two-protontransfer.The apparent heterogeneous electron transfer rate constant (ks) was 1.25 ± 0.25,2.07 ± 0.69 and 1.74 ± 0.42 s-1 for Hb, HRP and GOx, respectively. The method presentedhere can be easily extended to immobilize other redox enzymes or proteins and obtain theirdirect electrochemistry.

Keywords